Semi-Supervised Learning of Lift Optimization of Multi-Element Three-Segment Variable Camber Airfoil

نویسندگان

  • Upender K. Kaul
  • Nhan T. Nguyen
چکیده

This chapter describes a new intelligent platform for learning optimal designs of morphing wings based on Variable Camber Continuous Trailing Edge Flaps (VCCTEF) in conjunction with a leading edge flap called the Variable Camber Krueger (VCK). The new platform consists of a Computational Fluid Dynamics (CFD) methodology coupled with a semi-supervised learning methodology. The CFD component of the intelligent platform comprises of a full Navier-Stokes solution capability (NASA OVERFLOW solver with Spalart-Allmaras turbulence model) that computes flow over a tri-element inboard NASA Generic Transport Model (GTM) wing section. Various VCCTEF/VCK settings and configurations were considered to explore optimal design for high-lift flight during take-off and landing. To determine globally optimal design of such a system, an extremely large set of CFD simulations is needed. This is not feasible to achieve in practice. To alleviate this problem, a recourse was taken to a semi-supervised learning (SSL) methodology, which is based on manifold regularization techniques. A reasonable space of CFD solutions was populated and then the SSL methodology was used to fit this manifold in its entirety, including the gaps in the manifold where there were no CFD solutions available. The SSL methodology in conjunction with an elastodynamic solver (FiDDLE) was demonstrated in an earlier study involving structural health monitoring. These CFD-SSL methodologies define the new intelligent platform that forms the basis for our search for optimal design of wings. Although the present platform can be used in various other design and operational problems in engineering, this chapter focuses on the high-lift study of the VCK-VCCTEF system. Top few candidate design configurations were identified by solving the CFD problem in a small subset of the design space. The SSL component was trained on the design space, and was then used in a predictive mode to populate a selected set of test points outside of the given design space. The new design test space thus populated was evaluated by using the CFD component by determining the error between the SSL predictions and the true (CFD) solutions, which was found to be small. This demonstrates the proposed CFD-SSL methodologies for isolating the best design of the VCK-VCCTEF system, and it holds promise for quantitatively identifying best designs of flight systems, in general.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Camber and Thickness on the Aerodynamic Properties of an Airfoil in Ground Proximity (RESEARCH NOTE)

A linear vortex panel method is extended to include the effect Abstract of ground proximity on the aerodynamic properties of two dimensional airfoils. The image method is used to model the ground effect . According to the results, lift coefficient of an airfoil may increase or decrease in ground effect based on a combinative effect of its camber, thickness, angle of attack and ground clearance....

متن کامل

Multi-Element High-Lift Configuration Design Optimization Using Viscous Continuous Adjoint Method

An adjoint-based Navier–Stokes design and optimization method for two-dimensional multi-element high-lift configurations is derived and presented. The compressible Reynolds-averaged Navier–Stokes equations are used as a flow model together with the Spalart–Allmaras turbulence model to account for high Reynolds number effects. When a viscous continuous adjoint formulation is used, the necessary ...

متن کامل

Multi-Objective Six Sigma Approach Applied to Robust Airfoil Design for Mars Airplane

A new optimization approach for robust design, design for multi-objective six sigma (DFMOSS) has been developed and applied to robust aerodynamic airfoil design for Mars exploratory airplane. The present robust aerodynamic airfoil design optimization using DFMOSS successfully showed the trade-off information between maximization and robustness improvement in aerodynamic performance by a single ...

متن کامل

Optimization on Airfoil of Vertical Axis Wind Turbine Based on CST Parameterization and NSGA-II Aigorithm

Optimizing the NACA0015 airfoil which is widely applied in small-scale vertical axis wind turbine to make it has a better aerodynamic performance. In the optimization process, using CST parameterization method to perturb the airfoil geometry, the thickness and camber of the airfoil are selected as the constraint, and the value of the maximum tangential force coefficient is chosen as the objecti...

متن کامل

Drag Optimization Study of Variable Camber Continuous Trailing Edge Flap (VCCTEF) Using OVERFLOW

This paper reports the results of a computational study that was conducted to explore the effect of various Variable Camber Continuous Trailing Edge Flap (VCCTEF) configurations on the lift and drag of a NASA Generic Transport Model (GTM) wing section at a span-wise location called the break station that marks a sharp change in the wing trailing edge slope. The OVERFLOW solver with the the one-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017